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THEORY OF THE TRANSVERSE GRADIENT WIGGLER

I. Introduction

J. Madey and co-workers have proposed the use of an FEL with a

transverse field gradient to prevent the energy spreading and detuning I
which saturates the ordinary FEL. The basic idea is that the transverse

field gradient acts as a spectrometer so that as an electron's energy

changes due to interaction with radiation it is focused to a different

transverse position. One then arranges the transverse field gradient so

that the resonance condition k 2y2(x) k remains satisfied at all
tI + awZ (x) w

tranverse positions, x . Here ks is the radiation wave number, kw the

wiggler wave number, and a. - _e , the vector potential of the wiggler

wmagnet field. sw  is usually close to unity in value. We will concentrate

our attention on the possibility of obtaining high extraction from such a

magnet.

Madeyl has proposed a wiggler structure characterized in the y 0

plane by:

B(z,x) - ey [ThB(x) cos kwz + Bc(x)]

[r 21  n1q~/2

(x) B I + -1 +.! 2 + x/n1
0 na

aw



and

B W I e B (x)B'(x)

x o mc2k2  I +-S
w TI

Thus the field gradients are characterized by Tr ' This choice.

preserves the transverse independence of resonance. The equations of

motion for an electron orbiting in the x - z plane [after averaging over

the fast (kw-') motion] have been given by Madey as:

d2x = -k 2 (x - nS)(I + 6) - 2  (1)

dz

d6 e 2IEI B o x 1=J sin * (z) 1 += (I + 26(2dz 2 4 2 2 2
mck y

W 0 w

+ T (a + x/n)
2 \2

dx Y dx\
-- q + 2k (a -- )- 2 w'I-I
dz w 2 2 z)

(3)

Here IE I is the electric field of the optical wave, 6 - L-- 1 with
Yo
10

YO being the design initial energy for a particle which enters at x - 0,

and * is the optical phase , - (k + k )z - wf d. z q , the

optical phase slip, is, of course, a function of frequency. The design has

been chosen such that vz  , and hence q is independent of electron

energy so long as the betatron focussing keeps the electron at x -6

Further, we have
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t

k 2 1 (i+ a.) k2 (4)
11 w1

and J is a constant close to unity.

The underlined terms in equations (1) - (3) are small. Moreover,

there is some disagreement among Madey's papers, and further with recent

work of Horton, as to their exact coefficients which depend on details of

* design. However, all workers are agreed as to their approximate magnitude

and form and we shall see that the nature of the solution is insensitive to

the details of these small non-linear effects. We will first consider the

linearized problem, neglecting the underlined terms.

First, however, it is convenient to introduce dimensionless

variables. Let

z

k

X + i

k 

6

w

q + k q (5)

ko

The equations transform to (keeping terms of order - )
k

3v



k

-- (x - 6)(0 - S) (6)
k 1k
w

* i 6I 1 + B -2

c q I +xx ( + a ) (7)
2k w

w

=q -(x -6) + _- (x- 3 6 - x (8)

4k 4k
w w

It may be seen that the non-linear terms are all formally of order

k B  e 21EIB °  a a k 2  12

<< 1 Further e 0 J - 4 s w - j - where n is the
S4 2422 2 2 2

w m c kBy°  1 a w kB k

synchrotron frequency for oscillation in the ponderomotive potential

wells. In Sections II and IV we discuss regimes in which

E = (n/kB)2 << 1 The case c >> I is discussed in Section V.
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I1. Linearized Solution for c << I

The linearized forms of equations (6), (7), and (8) are:

x -- (x- 6) (9)

c c sin (10)

q- (x- 6) -q+ 1)

Equation (11) may be integrated immediately to yield

* -o + qz + (12)

where we have absorbed the initial value of i into the initial (random)

optical phase *o . Differentiating equation (9) then yields the desired

equation for X x

X -X + e sin (to + qz + X) (13)

Equation (13) is evidently of the form of a driven harmonic

oscillator. We are interested in achieving a high degree of excitation.

Thus the interesting regime is q n 1 , a nearly resonant oscillator. We

look for a solution of the form

X - f(z) sin [qz + #(z)) (14)



where f and * are slowly varying in z

Thus

K2(q + *)f cos (qz + *)+ [f-(q + ) ]~ (qz +

- 21 q cos (qz + *) - f(q2 + 2q ;) sin (qz + ) (15)

In deriving equation (15) we have made use of the assumption that

f and * are slowly varying.

Further, using the Bessel function expansion

if sin X ein A n(f)

we have

sin(to + qz + X) - n-1 M sin [n(qz + *) - (0 0

Here we need only the secular term (n 0 0) and the resonant terms

n - 1.

Thus

6



sin (4o qz + X) - Jl(f) sin (* -

+ 2J (f) sin (qz + *) cos -

0

"~ 2--,t-cos (qz + )sin ( * )

(16)

We are now in a position to substitute equations (15) and (16)

into (13) and equate coefficients of sin (qz + #) and cos (qz + *)

First, however, we specialize to the near resonant case by defining

1 - q2 . qX (17)

and setting q 1 elsewhere in the equations. From equation (13), we

then have

Jl(f)
- -sin *i(-4 ) (18)

and

f; -. .- eJ(f) cos ( - *) (19)

Further, we may determine the energy change from equation (10) and

the secular term in equation (16).

7



8- IM(f) sin (* - )  -f

so that

f2 - f2
0 (20)

2

with f << I the initial value of f
0

Note that the non-secular terms in equation (16) would lead to

oscillatory terms in 8 which are O(c) << I indicating small energy

spread.

Dividing equation (19) by equation (18) we have

d cos ( - ) J
o Af I

df cJ Jl cos ( 0 - o)

with solution

cos (I -C + (22)

We will be concerned with low initial emittances fo < < I in

which case C a 0 * In this case we see that near

f - 0 , cos (t - *o) * 0 , while from equation (19) it is clear the the

stable point is - T r-f . Hence initially sin ( - 1) - and

we see from equation (18) that f initially increases. We may now write

down the solution to equation (18)

8
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f
I f df (23)

f 1/2
f 02]

Equations (20) and (23) represent the solution to the problem. Saturation

# will occur for f given by

f2mx

J (f-) M- =

Since c is by assumption small we find for particles off

2ae For resonant
resonance (X * 0) that fmax = - and -8m a -7 F

particles and an infinitely long wiggler, growth will stop at JI(f) - 0

i.e., f - 3.8 . Here 8 M - (3.8)2 Thus the maximum extractionmax I-

which can be obtained by such a gain-expanded wiggler In the small c

regime is (using equation 5):

- (3.8)2 k 0 (24)
Y k w

By comparison, the maximum extraction from a simple wiggler is

f/k w  , which is smaller. (The saturation length for a simple wiggler is

We may obtain an explicit evaluation of equation (23) in the small

signal limit since JIMif) for f small. Then from (23) and (20) we

have

9



6y k f2 k, 02 2 X
f - sin -C (25)

W w A

A reasonable approximation to the departure from the small signal

limit for X2 > 32 to obtained by approximating J (f) f f2( _ . f2 ,

which yields:

6y kl 2 2 +€2 1/2

. . £ sin2  A2  /2 (25')

WA + C

The shape of the resonant (A - 0) extraction cur've, obtained by

numerical evaluation of equation (23) is shown in Figure 1. An approximate

saturation length can be defined by

8 8k8

La 8 8 0 (26)

10
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III. Non-Ideal Effects

We may now discuss the sensitivity and modification of our

solution by various perturbing effects.

(1) Horizontal Emittance

We have assumed that at z - , x - n6 and ir-0 If

this is not the case then the constant C of equation (22) may no longer

be set to zero. A complete analysis in the small signal limit at resonance

is straightforward and shows that, after phase averaging, <8> is

unaffected by the value of fo even when f2 > f 2 _ f 2  . so long as0 0

fo < I t is also clear, however, that as the initial fo increases

significantly beyond unity, the saturated limit of 6 decreases. We may

estimate that the horizontal emittance Eh is related to f. by

so that the condition on maximum allowed horizontal emittance is

2

f . 2E k - < 1 (27)
o hsk B

(2) Vertical Emittance

For a simple 2-D gain expander of the type proposed by Madey

the vertical and horizontal oscillations are decoupled. We have not

investigated the possibility of a more complex 3-D structure. For the

*) decoupled magnet it may be seen that the vertical oscillation frequency

13
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k is of the same order of magnitude as ko o The variation in

flutter motion with y makes a comparable contribution to Av3 z The

exact relations depend upon details of magnet design. As a simple

parametrization we write

2 2Av

E = -

v kA k-
B B

where k - k' Requiring that the phase slip be less than w and

using equation (26) to estimate L we find

k Ev 1k;\ < ,(28)

(3) Diffraction

The lengths implied by equation (26) may also pose

difficulties in passing a diffraction limited beam through the magnet.

Using the criterion that the optical beam intensity for a Gaussian beam

should be down by e4 at the magnet aperture from its central value, and

using equation (26) to estimate beau length we find a restriction on beam

radius

r2> 32-- (29)

0 k

Since geometrical considerations may also require rb - n

equation (29) may provide considerable restraint on magnet design.

14
!



Equations (26) - (29) and the definitions:

22 (30)

8 w

k %,+m (31)

S2 4aa (32)
I + awea

a (33)

provide the basic imput for specifying the parameters of a medium-

extraction single-pass gain-expanded magnet.

15
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IV. Effect of the Omitted Non-Linear Terms

We turn now to a consideration of the modifications introduced by

the underlined terms in equations (6) - (8). First, however, we briefly

consider a related problem, the effect of using wiggler magnets whose

properties aw  k etc., vary with z . It seems clear that the

w 9

principal effect, in view of the sharp resonance behavior exhibited by

equation (25), will be to make A(z) variable. Thus if we modify our

basic ansatz (14) to assuming a solution of the form

X- f(z) sin (z - f Xdz + *) we may reduce the problem to a solution of

equations (18) and (19) with X replaced by A(z) . For general X(z)

these may be reduced to a non-linear 2nd order differential equation for

f . Powever, it is clear that the saturation limit of equation (24) will

not be exceeded.

Let us now return to the non-linear problem and consider equations

(6), (7), and (8). Working to order x2  , 62 , x6 , etc., and making

use of the fact that 6 is slowly varying to 0 (c) while x has a large

oscillatory piece, we may rewrite equation (8) as•o .2
q + x [+k- (x - 6 + 26)] x2

- q + x -+ ]-e - (;2 + x2)

so that

17



- ---. + -2 ----

q + *o x )dz B

uqz + 0 - f(;2 + x 2)dz + X (34)
wj

and from equation (6)

k k

X - -( k-- 6) x + 6 (I 2(356

w W

Again we make the ansatz

X - f sin 10+ qz ; j(2 + x2)dz +

and keep only those terms which affect the resonance. Thus it is adequate
to use - sin 4 , neglecting the order LO modifications in

w

Equations (18) and (20) are then unaltered while equation (19) becomes

[recalling that t - f sin ( ); X- f cos ( ), 6 -f2 /2 ]

2

2 f cos ( - 0,) (36)
2 f

As we have done in the linear theory we may integrate equations

(18) and (36) to obtain

Cos. 1 [Xf2 ko f4 (7
corn (€ -4,o) f.f1 + , (37)

18



and

I fdf

" " f j - f2 + f4/8

-z IRecalling that the resonance width is determined by Tz
k w4 2

k
8 - 4w

we see that the non-linear effect will be unimportant when - -

k 2
w k Lff2  B

Taking f 8 as a typical saturation value and using (26), this criterion

k 8 - 4w
may also be written -< * When this criterion is well satisfied

w

the saturation level of equation (24) becomes accessible if I is given an

appropriately chosen small negative value.

kWe see that non-linear effects become important when T is

w
large enough. For the resonant electron, 1 - 0 , peak extraction will

then occur for

f J (f) - f/2

8e k 1iw
or

a2 k  3 (38)

w wl

at

4 w 1 r (76) 2
z ( - - - 3.85 (kw/k e

r (4/3)



By detuning, i.e., choosing a slightly negative A , a factor of

about 2.5 improvement can be obtained in extraction, while of course a

carefully chosen variable pitch X(z) could cancel the non-linear

frequency shift and recover the saturated efficiency of equation (24). As

discussed earlier, different magnet designs could also result in slightly

different non-linear terms thereby yielding a different numerical

coefficient in equation (38). However, it is very difficult to see how a

design of this type could improve on the extraction efficiency given by

equation (24). We have considered in this note only designs for q - 1 as

proposed for small e high single pass extraction. However, the

techniques employed herein may also prove of use in analyzing the behavior

of functionally canceling designs proposed for storage ring adaption.

Finally, we note that operation at q - 0 could also give comparable

extraction if a pre-bunched beam (Klystron) were used.

We have integrated equations (6) - (8) numerically for the case
k

.05 , 0 - .2 for which equation (38) predicts .y) .050
w y max

Numerically we obtained (- )ax - .051

20



V. The High Intensity Regime

We recall from the theory of the uniform wiggler that the

parameter 0l corresponds to the small amplitude oscillation frequency in

the ponderamotive potential wells, and may be referred to as the optical

synchrotron frequency. In our previous discussion we have assumed this

frequency to be small compared to ko , the betatron frequency, here

induced by the transverse gradient. The case in which fl - k can be

expected to be complicated as it is likely to lead to coupling between the

two oscillation modes. However, the case 0 >> k again leads to behavior

which can be discussed in a simple way.

We first differentiate equation (11) to obtain = - -

and using equations (10) and (12) we find

c - sin * + *0 - + qz (39)

To relate the discussion to that given in Ref. (2) we shift the phase in

(39) of both * and *o by w * That is, we write *=,+, ,which

yields

* -C sin # + #0 + qz (40)

92
Since C I , we are here interested in the region C 1 > For

k
qz << c , Phe equation is approximated by * - -C sin * Since

(0) - q (for x6) ,those electrons with -w +3- < #0 <

21



are trapped in oscillatory orbits. That is, all but a fraction q/w 4v
are trapped, and we assume this quantity to be very small. For the trapped

orbits i 0i , <*o, < w and we can therefore consistently treat these terms

as small compared to e . The term qz , of course, grows with z and

we shall show below that it leads to a progressive detrapping of particles,

but it also leads to a reduction of particle energy for those which remain

trapped. Appealing to the theory of the variable parameter wiggler

discussed in Ref. 2, we shall assume that the main contribution to the

averaged energy exchange comes from the trapped particles, and neglect any

contribution from particles which have become detrapped. Thus for trapped

particles equation (40) may be written

e sin +qz dF (41)

where

F(#) - -e (cos *+.sinr) (42)

with

sin 'r = (43)
r C

Equation (41) describes motion in the potential F(#) , which has the

general form of Figure 2.1 of Ref. 2. The trapped particles execute

oscillatory motion about the minimum, which occurs at * = *r , and for

22



the trapped particles <sin > , which represents the average over this

motion, is equal to sin fr * This statement is rigorously true only for

z independent f , but the same result holds approximately when we may

regard fr as varying adiabatically. Again assuming adiabatic variation,

the phase area of any trapped orbit remains constant, but the maximum phase

area available for trapped orbits shrinks as *r increases and vanishesWr

as *r reaches !. There is thus a continual detrapping of particles
r 2

as z increases, and when qz - e all particles are detrapped. Since

there is then no further average energy exchange, the wiggler should be

terminated when, or before, this point is reached.

On the basis of the above physical description we write

<> - -e sin 4 J(sin 4)
r r

= -qz j(.M) (44)

where J(sin *r) is the area in phase space enclosed by the last trapped

orbit relative to that at *r = f . It is given explicitly by

a(*r) = a(sin - -L) defined by equation 2.60 in Ref. (2). It follows
r C

that J(o) is unity, and if Mz L 1 , equation (44) yields the simple
C

result

<6> 1 2

23



where z. M- k L . Reintroducing the original variables in accordance

with equation (5), we have

2___q(k 83L) 2

-s> (45)
- 4k

for qL << e The function J(21) is obtained by carrying out the
C

integral of equation 2.60 (Ref. 2) numerically. A second numerical

integration of equation (44) is then required to obtain <6> when -z is£

not small. We write the result as

<Sy> q(k L)2 G(qL (46)

Y 4k C
w

where G is plotted in Figure 2. We note that G decreases approximately

linearly from one to .22 as its argument varies between zero and one. As

noted before, regarded as a function of L , <> reaches its maximum

value at qL e £ ,yielding

4

q t () - (.22) (47)-<L6ly>)
L 4k qk2

w S

Equation (46) can also be conveniently written in the form

_ <8> . 2 L S G (%L-) (48)

y 4k c Cw

The product CL G ( L ) is also plotted in Figure 2. It is seen to have
The

maximum value of .27 at - .65 o Thus we may write
2

24
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(for the optimum q )

-m<2L (.27) (48)
i max 1-

V

The horizontal and vertical emittance requirements which are

applicable to this regime differ from those derived in III. In the case of

vertical emittance we again have

2Av
E -Z

v k

but here we require that &v be sufficiently small to permit trapping,
z

i.e., as shown in (Ref. 2)

22 :

1 + a 2 y I + a I

AV < w
Z < -y 2 k

Y Y w

so that

2(1 + a2 ) k
w B

v <  "(50)

Yk B

In the case of horizontal emittance it is necessary to take the coupling of

the transverse motion to the optical synchroton oscillations into

account. When A(o) does not vanish, equation (40) must be written

- -C sin * + *o " * + [qz - i(o)] (51)

The condition for the existence of a trapping potential at z - 0 is

26



*

1(o) < c . Furthermore, ;(o) - q - (x -6) - -(x -6) . Trapping for

i(o) - 0 requires (x - 6) < 2 vi . In order to take the two effects

into account simultaneously we estimate (for a properly matched beam)

(x - 6) ;o) < C3/2

Using equation (5) to regain dimensional variables and equation (4) to

eliminate n , we obtain

Eh ( [(x -6)o (O)]dimenslona 1

B( + 2) 3/2 kB  €3/2
< + ) C3/2 - C (52)

4k y w s

In conclusion we note that these crude approximations may be

expected to hold when OL >> I but << I and 6 << I also. As seen
w

in Section IV, the principal effect of the non-linear terms is to shift the

betatron frequency as the betatron amplitude increases. For the regime

discussed in this section, the resonance condition q - kB plays no role,

the excitation of betatron oscillations is small, and we expect the non-

linear terms to be loes important than other omissions in the analysis.
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VI. Summary and Discussion

In the preceding sections we have identified three distinct

operating regimes for the transverse gradient wiggler (TGW), which we

characterize as low intensity, medium intensity, and high intensity

regimes. The parameters and properties of these regimes are summarized in

Table I. In the interest of simplicity and in recognition of the lack of

numerical precision in some of our arguments we have simplified numerical

coefficients. The more detailed description is given in the previous text.

The low an, medium intensity regimes may be thought of as

stimulated Raman effect regimes, in which a quantum of betatron oscillation

and an optical quantum are simultaneously emitted, with the energy being

supplied by the reduction of the amplitude in the transverse flutter

motion. In more classical terms, the electron in its longitudinal rest

frame sees a ponderomotive potential which oscillates at the transverse

betatron frequency. This induces oscillations in y which, on account of

the transverse field Sradients, results in a transverse driving force at

the betatron frequency. The combination of the flutter motion and induced

betatron motion has sum and difference frequency components, and as is

typical of Raman processes, only the difference frequency component leads

to amplification. The frequency of the amplified wave in the laboratory

frame is then found by Doppler shifting the frequency determined in the

electron's longitudinal rest frame. As the electron loses energy to the

optical wave, the center of betatron oscillation shifts transversely, so

that the electron's average tranverse position shifts to a position of

29
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TABLE I

Low Intensity Regime Medium Intensity Regime High Intensity Regime

. ,12 12

definition 1 k\12
of regime 0 < < <  33  << -L << I - > 1

.1k Ik BTw kBB v f

kB 0n 4  
2  k Q42 4k 2AL L.._iqk LS2 16k w k4k w

(L << L sat)

o ",1/3/ _\/3 k24

il2 15k

VV

L k 1/3  8k2

sat n4/3 02 4k2

4/3 8

E < w _____24

Zkk 2k 1/3 2kk 2k
2 k k ' k kk k-s

kB k 3
Eh< 2k s kw 2ksk 2ksk2k

Characteristics of the Various Operating Regimes of the Transverse Gradient Wiggler.

maximized with respect to q for fixed L
(q 3Lk 

2 I
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* weaker wiggler field. The flutter motion is thereby reduced in amplitude,

the reduction in kinetic energy having gone to supply that delivered to the

optical field. The two regimes differ only in their saturation

mechanism. Due to the non-linear nature of the ponderomotive potential,

the amplitude of the driving force at the betatron frequency decreases as

the amplitude of the phase oscillation increases, and eventually

vanishes. Thus the driving force is decoupled. At the same time, the

underlined non-linear terms in the equations of motion cause both the

betatron frequency and the driving frequency to shift as the amplitude of

the oscillation grows. In the medium intensity regime the intensity is

sufficiently high that the decoupling effect occurs before the detuning

effect becomes effective. In the low intensity regime the growth rate is

slower, and the fact that the driving force has become non resonant becomes

the factor which limits growth of the wave. It should be emphasized that

both regimes are non-linear. The non-linear character of the pondermotive

potential is dominant in the medium intensity regime, while the underlined

non linear terms are dominant in the low intensity regime.

The high intensity regime may be thought of as a trapped particle

regime analogous to the basic regime of the high extraction variable

parameter wiggler (VPW) without transverse gradient. The analogy is

especially close when the parameter variation consists merely of a

reduction of the wiggler field intensity with z . In both regimes the

particles are trapped in ponderomotive potential wells, where they execute

optical phase oscillations at the optical synchrotron frequency. The

gradient in wiggler field shifts the phase center of these oscillations to

31



one which, on the average, causes a transfer of energy to the optical

field. In the TGW case the electron simultaneously drifts sidewise to a

region a weaker wiggler field, while in the VPW case it convects to a

position of weaker field. In both cases there is a simultaneous decrease

in the flutter amplitude, thus accounting for the energy to the optical

wave.

The transition between the medium and high intensity regimes

requires passage through a region in which the betatron and synchrotron

frequencies are equal. The numerical work of Madey and Eckstein suggests,

as one might expect, rather complicated behavior, and oscillations in

saturated gain may even occur. In this connection we note that the

saturated gain formulas for the high and medium intensity regimes match

badly at e - I , q - k

As contrasted to the uniform wiggler without gradient all of the

TGW regimes would seem to lead to an improvement in extraction.

Furthermore, as emphasized in the original proposal of the TGW, the energy

spread requirements are much less severe. Extractions comparable to that

of the VPW are, however, probably attainable only in the high intensity

regime. Because of the similarity of the physical character of the regimes

one expects that the optical intensity requirements will be similarly

high. Indeed, equation (50) for the TGW may be written

(<6y> 1  a -
"- -I .27 k La < .135 k La

y, max w s w s
S+a

w

32



This may be compared with

( - -. 28k iLaa

for the VPW. This latter result is based upon equation 4.8 of Ref. 2

specialized to low b to make it directly comparable to equation (50),

with 4r - .68 rad and fb m .45 as indicated by Figure 4.2 b and 4.2.

(re  ni at low nb )  •

e

By way of direct comparison, Madey has considered a TOW case in

which A - 5 cm , L - 20 m , B(n mi nal) = 6 kG , y - 354 , and X - IV
w w

For an optical flux of 1012 watts/cm 2 he obtains numerically an extraction

of 14.2%. (Our semi-analytic approach yields 12.8%). For a transverse

magnet VPW case with the same parameters, except that Bw  decreases

linearly from 6 to 1.5 KG as one passes through the wiggler, the computed

extraction (including both capture fraction and detrapping effects) is 21%.

The effective vertical focussing forces in the TOW are stronger

than those in the VPW, a fact which tends to make the emittance

requirements more restrictive. On the other hand, for the VPW with

constant 4r the trapping potential (i.e., Sym) is reduced by the factor 2

r

r(*r) r The two effects approximately cancel for the comparison example

considered above.

For the VPW with transverse magnet, the horizontal emittance

restriction is very weak, as there are negligible horizontal focussing
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forces and negligible horizontal field variation. For convenience of beam

design one takes Eh - Ev  , but Eh >> Ev would presumably be achievable

if the total emittance constraint were found to excessively restrictive.

In contrast, for the example being considered, the horizontal emittance

requirement equation (50) is more than fifty times more restrictive than

the vertical one. Thus to take full advantage of the vertical beam

emittance available, a ribbon-like beam structure would be required, and it

may prove very difficult to obtain such a small horizontal emmitance.

Although we have not carried out the parameter exploration that

would be required to reach a decisive conclusion, the above discussion

provides a strong indication that compared on a steady state operation

basis, the VPW will prove substantially superior to the TGW for high

extraction single pass operation.

An important issue, which we have not studied, is that of the

build-up of oscillations from a low level, and the nature of the optical

pulse form which emerges when the system is driven by the electron micro-

bunches typically produced by an RF LINAC. Qualitative changes in the

operating regimes take place as build-up proceeds, and both devices are

subject to detrapping by field fluctuations. It is entirely possible that

important differences will emerge, and that either, neither, or both may

prove desireable from this point of view.

'J
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In conclusion we wish to acknowledge that the development of the

preceding theory was facilitated by the numerical work of Eckstein and

Hadey. Their work has also provided us with the opportunity to make some

detailed quantitative and qualitative comparisons with their numerical

results. The agreement is generally very good, and we have found no

significant discrepancies in regions where we consider that our theory

should apply.
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